
10/4/2021 ς Monday

Chapter 3 Transport Layer

The lecture for this class can be found on Collab under, "Lecture Capture."

Goals for today:

¶ Understand principles behind transport layer services

o Multiplexing, demultiplexing

o Reliable data transfer

o Flow control

o Congestion control

¶ Learn about internet transport layer protocols

o UDP: connectionless transport

o TCP: connection-oriented reliable transport

o TCP congestion control

Transport services and protocols:

¶ Provide logical communication between application processes running on different hosts

¶ Transport protocols actions in end systems:

o Sender: breaks application messages into segments, passes to network layer

o Receiver: reassembles segments into messages, passes to application layer

In the transport layer protocol, we have an end-to-end system communication. We receive data from

the application layer, the data is going to come in and feel like a stream of data, it's going to break it up

into segments, the segments are going to get stuck into packets of the network, data link, physical layer,

packets get sent over network.

The receiver is going to take all of the independent packets and reassemble them. They are going to pop

out like a stream of data on the other side.

There are two transport layer protocols available to internet applications

¶ TCP

¶ UDP

Why do we need this extra layer of protocols?

Transport vs. network layer services and protocols

Household analogy:

One reason in reliability, and the other is because the have a lot processes running on the device.

Think of the processes as a house with a bunch of kids. The house is the actual machine, and the kids

are the processes. One kid might be a browser, game, etc. Messages you can think of as letters in an

envelope. Transport layer is the parent. It is going to look at the letters and say which kid each letter

goes to. It is going to demultiplex each letter when they come in from the mail service (network

layer) and logically decide where they go.

10/4/2021 ς Monday

Network layer is going to manage communication between hosts. Transport is going to logically

manage the communication between processes. On our OS, the TCP stack is responsible for saying

what packet goes where.

Transport Layer Actions

Each box in the figure below in a socket. We'll look at sockets later, but for now it is an abstraction. Each

process is associated with socket. A socket, for now, is a logical abstraction that gives the application a

doorway to the transport layer.

App message comes from application layer. Transport layer adds extra headers (ports, dest IP, etc.).

Then gets sent to network layer to do everything with IP addresses and processing. Then sent to link

layer. This is where ethernet headers get added. Then to the physical layer where it gets sent through

system of routers to the other end.

10/4/2021 ς Monday

Receiver will receive the segment and inspect the headers. Based on those, determine which application

it needs to go to. Extract application layer message and send message out to the app (browser, utility

that is running).

Twp principal internet transport protocols

TCP:

¶ Reliable, meaning that every packet that every packet we send is going to make it. Not one

packet will be lost

¶ In-order delivery, meaning that if a path in the network changes and a packet takes a different

path from another packet. When the packet gets there out of order TCP will reorder and

reassemble them in the correct order.

¶ Congestion control, meaning that if a lot of things are sent, TCP will detect that and try to

reduce congestion

¶ Flow control, meaning we change the speed at which the transport layer is sending packets

¶ Connection setup, meaning we need to keep track of all of the packets. Need to know if a packet

is lost, so we have a direct connection with the system.

UDP:

¶ Send across the network. If any packets get lost, we don't care. If the queue gets overwhelmed,

we don't care. If a packet gets corrupted and dropped, we don't care.

¶ Used for video and gaming. Packets get lost all the time in gaming.

Transport layer has no delay guarantees and no bandwidth guarantees

10/4/2021 ς Monday

Knowledge check

Correct answer is 2: Transport layer functions are implemented primarily at the hosts at the "edge" of

the network

10/4/2021 ς Monday

The correct answers are 1, 3, 4, 5, 6

Demultiplexing

Have a bunch of packets coming in, so we need a way to tell what packet is for what application. Have

applications running at the application layer, and the transport layer is going to inspect things to decide

which application to send a packet to.

Taking in data and deciding where it goes.

Multiplexing

Take in data from the application layer and assign a port number for each application. It will combine

them and send it out.

Take each application and assign it a unique port number so we know which application maps to which

socket. We then send it over the network.

10/4/2021 ς Monday

SEE PONOPTO VIDEO STARTING AT 15:00 FOR AN EXAMPLE OF THESE TOPICS

Note from example in Panopto video:

We can spin up two separate processes in our Apache service (P1, P2) and they communicate

independently with our 2 Firefox browsers. We do this for many reasons, but one is scalability.

Sockets

A process sends/receives messages to/from its socket. You can think of a socket as a doorway. A socket

is going to be assigned to each process. When we think of TCP or UDP communication, we are thinking

about communication between sockets. We are going to rely on the underlying transport layer protocol

to manage all of the reliability associated with the sending process.

10/4/2021 ς Monday

Terms:

Socket for the sender is called the sending socket or client socket.

Socket for the receiver is called the server socket.

How are these sockets identified? Addressing processes

We need to be able to say where the packet is going. We have an IP address that identifies the first host,

and the socket is identified by a unique port.

Details on multiplexing/demultiplexing

See the socket abstraction below. W3 have 4 processes P1-P4. They are communicating.

P1 is going to send a packet to P3. We are going to have multiplexing at sender. We are going to handle

two processes P1 and P2. We need to label them appropriately with their associate sending ports, but

they are going to share the same IP address.

10/4/2021 ς Monday

Then, when we get packets form P3 and P4, they are going to have to be demultiplexed. They are going

to have to split up the TCP stream and decide which packets associate with the stream go to P1, and

which packets go to P2.

How demultiplexing works

Host receives a datagram and looks at IP address and port number and decide which process to send it

to. The key point is that the host uses both IP address and port number to direct segment to appropriate

socket. So, when we construct our TCP packet, we are going to have to have 2 pieces of key information,

our source port and our destination port.

Source port is the port associated with the process that is sending the packet. Destination port is the

port associate with the process that is receiving the packet.

10/4/2021 ς Monday

Connectionless demultiplexing

Key thing to notice is that there is no unique linking between the IP address on the machine and the port

number. All we are doing is looking the the port number here for a UDP segment. For UDP, datagrams

with the same destination and port but different source IP addresses will be directed to the same

process. If two things have separate IP addresses, as long as their destination port and port # are the

same, they are going to go to the same socket on the machine. This doesn't work for our browser

example because we were using TCP.

FOR A DETAILED EXAMPLE OF CONNECTIONLESS DEMULTIPLEXING, SEE THE PANOPTO VIDEO STARTING

AT 31:00

Connection-oriented demultiplexing

We looked at the connectionless approach, but with a browser, we don't want to drop any packets. So,

we are going to have a connection-oriented approach. Each browser needs to have a sperate process in

the web server that it is corresponding to.

10/4/2021 ς Monday

We are going to use a 4-tuple identifier

FOR A DETAILED EXAMPLE OF CONNECTION_ORIENTED DEMULTIPLEXING, SEE THE PANOPTO VIDEO

STARTING AT 35:56

Summary

¶ Multiplexing, demultiplexing: based on segment, datagram, header field values

o We're going to have special header fields in the datagram for source and destination

¶ For UDP: demultiplexing using destination port number (only)

¶ For TCP: demultiplexing using 4-tuple: source and destination IP addresses and port numbers.

¶ Multiplexing/demultiplexing happens at all layers

